Code: 13A54301

B.Tech II Year I Semester (R13) Supplementary Examinations November/December 2016

MATHEMATICS - II

(Common to CE and ME)

Time: 3 hours

Max. Marks: 70

PART - A

(Compulsory Question)

- 1 Answer the following: $(10 \times 02 = 20 \text{ Marks})$
 - (a) Define rank of a matrix.
 - (b) State Cayley Hamilton theorem.
 - (c) Define Transcendental Equation and give one example.
 - (d) Explain about Newton's Formulae for Interpolation.
 - (e) Apply Euler's method to solve y' = x + y, y(0) = 1 and find y(0.2) taking step size h = 0.1.
 - (f) Write formula for Simpsons 3/8 rule.
 - (g) Write Linear Property of Fourier transform.
 - (h) Write Dirichlet conditions for Fourier Expansion.
 - (i) Solve $u_{xx} u_y = 0$ by separation of variable.
 - (j) Form the partial Differential Equation by eliminating arbitrary constants a and b from:

$$z = ax + by + a^2 + b^2$$

PART - B

(Answer all five units, 5 X 10 = 50 Marks)

UNIT – I

2 Test for consistency and solve the following system of equations:

$$x + 2y + z = 3$$

$$2x + 3y + 2z = 5$$

$$3x - 5y + 5z = 2$$

$$3x + 9y - z = 4$$

OR

Reduce the quadratic form $3x^2+5y^2+3z^2-2yz+2zx-2xy$ to canonical form by orthogonal reduction.

UNIT – II

- 4 (a) Find the root of the equation $xe^x = 2$ using Newton Raphson method correct to three decimal places.
 - (b) By the method of least squares, find the straight line that best fits the following data:

Х	1	3	5	7	9
У	1.5	2.8	4.0	4.7	6.0

OR

5 (a) Find the cubic polynomial which takes the following values

Χ	0	1	2	3
f(x)	1	0	1	10

Hence calculate f(4).

(b) Using Lagrange Interpolation formula find the value of y corresponding to x = 10 from the following table.

Χ	5	6	9	11
Υ	12	13	14	16

Contd. in page 2

www.jntuonline.com

UNIT – III

6 (a) Given that

_	on that								
	Х	1.0	1.1	1.2	1.3	1.4	1.5	1.6	
	V	7.989	8.403	8.781	9.129	9.451	9.750	10.031	

Find
$$\frac{dy}{dx}$$
 and $\frac{d^2y}{dx^2}$ at x = 1.1

(b) A rocket is launched from the ground. Its acceleration is measured every 5 seconds and is tabulated below. Find the velocity and the position of the rocket at t = 40 seconds. Use Trapezoidal rule.

a(t)(cm/sec ²) 40.0 45.25 48.50 51.25 54.35 59.48 61.5 64.3 68	t(sec)	0	5	10	15	20	25	30	35	40
[a(t)(cm/sec) 40.0 45.25 46.50 51.25 54.35 59.46 61.5 64.3 66	a(t)(cm/sec ²)	40.0	45.25	48.50	51.25	54.35	59.48	61.5	64.3	68.7

OR

- 7 (a) Solve $y' = x y^2$, y(0) = 1 using Taylor's series method and compute y(0.1) & y(0.2).
 - (b) Apply the fourth order Runge-Kutta method, to find an approximate value of y when x = 1.2 in steps of 0.1, given that $y' = x^2 + y^2$, y(1) = 1.5

UNIT – IV

8 Obtain the Fourier series in $(-\pi, \pi)$ for the function $f(x) = \begin{cases} 0, -\pi < x < 0 \\ \sin x, 0 < x < \pi \end{cases}$

OR

Find the Fourier Cosine Transform of f(x) defined by $f(x) = \frac{1}{1+x^2}$ and hence find Fourier sine Transform of $f(x) = \frac{x}{1+x^2}$.

UNIT - V

A tightly stretched string of length l with fixed end points is initially in an equilibrium position. It is set vibrating by giving each point a velocity $v_0 \sin^3 \left(\frac{\pi x}{l} \right)$. Find the displacement y(x, t).

OR

An infinitely long plane uniform plate is bounded by two parallel edges and an end at right angles to them. The breadth is π ; this end is maintained at a temperature u_0 at all points and the other edges are at zero temperature. Determine the temperature at any point of the plate in the steady state.
