Code: 13A54102

B.Tech I Year (R13) Supplementary Examinations June 2016 MATHEMATICS – II

(Common to EEE, ECE, EIE, CSE and IT)

Time: 3 hours Max. Marks: 70

PART – A

(Compulsory Question)

1 Answer the following: $(10 \times 02 = 20 \text{ Marks})$

- (a) Define the rank of a matrix with example.
 - (b) Show that $A = \begin{bmatrix} i & 0 & 0 \\ 0 & 0 & i \\ 0 & i & 0 \end{bmatrix}$ is a Skew-Hermitian matrix.
- (c) Find the sum and product of the Eigen values of the matrix $A = \begin{bmatrix} -1 & 2 & 3 \\ 0 & 3 & 5 \\ 0 & 0 & -2 \end{bmatrix}$.
- (d) Prove that $E \nabla = \Delta = \nabla E$.
- (e) Construct the difference table if y(0) = 1, y(1) = 0, y(2) = 1 and y(3) = 10.
- (f) If $y = ax + bx + cx^2$, then write the normal equations to fit the curve.
- (g) Evaluate $\int_0^1 \frac{1}{1+x} dx$ by Trapezoidal rule.
- (h) Find the Fourier series of f(x) = x in $(-\pi, \pi)$.
- (i) What is $F_C \{e^{-at}\}$ and $F_C \{t e^{-at}\}$
- (j) Find $Z(n^2)$.

PART - B

(Answer all five units, $5 \times 10 = 50 \text{ Marks}$)

UNIT - I

2 Reduce the matrix $A = \begin{bmatrix} 1 & 2 & 3 & 0 \\ 2 & 4 & 3 & 2 \\ 3 & 2 & 1 & 3 \\ 6 & 8 & 7 & 5 \end{bmatrix}$ into Echelon form and hence find its rank.

OR

3 Verify Cayley Hamilton theorem and hence find A^{-1} , where $A = \begin{bmatrix} 1 & -2 & 2 \\ 1 & 2 & 3 \\ 0 & -1 & 2 \end{bmatrix}$.

UNIT - II

4 (a) Using Newton's forward interpolation formula and the given table of values obtain the value of f(x) when x = 1.4.

x	1.1	1.3	1.5	1.7	1.9
f(x)	0.21	0.69	1.25	1.89	2.61

(b) Using Lagrange's interpolation formula, find y(10) from the following table.

х	5	6	9	11
у	12	13	14	16

OR

5 (a) Fit a straight line to the data given below:

٠.				9		
	x	1	3	5	7	9
	у	1.5	2.8	4.0	4.7	6.0

(b) Evaluate $\int_0^6 \frac{1}{1+x} dx$ by using: (i) Simpson's $\frac{1}{3}$ rule. (ii) Simpson's $\frac{3}{8}$ rule.

Contd. in page 2

UNIT - III

- Find y(0.1) and y(0.2) using Runge-Kutta 4th order formula given that $y' = x^2 y$ and y(0) = 1.
- Find the Fourier series of the periodic function defined as $f(x) = \begin{cases} -\pi, -\pi < x < 0 \\ x, 0 < x < \pi \end{cases}$. Hence deduce that $\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \cdots = \frac{\pi^2}{8}$.

UNIT - IV

- Find the Fourier transform of f(x) defined by $f(x) = \begin{cases} 1, & |x| < a \\ 0, & |x| > a \end{cases}$ and hence evaluate:
 - (i) $\int_0^\infty \frac{\sin p}{p} dp$. (ii) $\int_{-\infty}^\infty \frac{\sin ap.\cos px}{p} dp$.

OR

- 9 (a) Find $Z\left(\cos\frac{n\pi}{2}\right)$ and $Z\left(\sin\frac{n\pi}{2}\right)$.
 - (b) Find $Z^{-1} \left[\frac{2z}{(z-1)(z^2+1)} \right]$.

UNIT - V

- 10 (a) Form a partial differential equation by eliminating the arbitrary function 'f' from $xyz = f(x^2 + y^2 + z^2)$.
 - (b) Solve by the method of separation of variables $\frac{du}{dx} = 2\frac{du}{dt} + u$ where $u(x, 0) = 6e^{-3x}$.

OR

A tightly stretched string with fixed end points x = 0 and x = l is initially in a position given by $y = y_0 \sin^3 \frac{\pi x}{l}$. If it is released from rest from this position, find the displacement y(x, t).
