Code: 13A54101

B.Tech I Year (R13) Supplementary Examinations December/January 2015/2016

MATHEMATICS - I

(Common to all branches)

Time: 3 hours

Max. Marks: 70

PART - A

(Compulsory Question)

1 Answer the following: $(10 \times 02 = 20 \text{ Marks})$

- (a) Eliminate C from the equation $y = Ce^{\sin^{-1}x}$
- (b) Solve $\frac{dy}{dx} + (\cot x)y = \cos x$.
- (c) Find C.F y''' 7y'' + 14y' 8y = 0.
- (d) Find Particular Integral of $(D^2 + 5D + 6) y = e^x$.
- (e) If $x = r \cos \theta$, $y = r \sin \theta$ find $\frac{\partial(x, y)}{\partial(r, \theta)}$.
- (f) Explain Stationary points and Stationary Values.
- (g) Find the Laplace Transform of $e^{-3t}(2\cos 5t 3\sin 5t)$.
- (h) Find $L^{-1} \left[log \frac{1+s}{s^2} \right] = ----$
- (i) Find Div \overline{f} where $\overline{f} = grad(x^3 + y^3 + z^3 3xyz)$.
- (j) State Green's theorem in xy-plane.

PART - B

(Answer all five units, 5 X 10 = 50 Marks)

UNIT - I

- 2 (a) Solve $(1+y^2)+(x-e^{\tan^{-1}y})\frac{dy}{dx}=0$
 - (b) A body kept in air with temperature 25°C cools from 140°C to 80°C in 20 min. Find when the body cools down to 35°C.

OR

- 3 (a) Solve $(D^2 + a^2)y = tanax$ by method of variation of parameter.
 - (b) Solve $y'' + y = e^{-x} + x^3 + e^x \sin x$

UNIT - II

- 4 (a) Verify whether the following functions are functionally dependent, if so, find the relation between them $u = \frac{x + y}{1 xy}$, $v = Tan^{-1}x + Tan^{-1}y$.
 - (b) Examine the following function for extreme values $f(x,y) = x^4 + y^4 2x^2 + 4xy 2y^2$

OR

A rectangular box open at the top is to have volume of 32 cubic feet. Find the dimensions of the box requiring least material for its construction.

UNIT - III

6 Trace the curve $x^3 + y^3 = 3axy$

OR

7 Find the length of arc of the parabola $y^2 = 4ax$ cut off by the line 3y = 8x.

Contd. in page 2

R13

Code: 13A54101

UNIT - IV

- 8 (a) Find the Laplace Transform of the following:
 - (i) $\frac{\sin 2t}{t}$. (ii) $\frac{e^{-4t} \sin 3t}{t}$
 - (b) Find the inverse Laplace Transform of $\frac{s}{(s^2+a^2)^2}$ using Convolution theorem.

OR

9 Solve by Laplace Transform method. y'' - 3y' + 2y = 4, where y(0) = 2; y'(0) = 3.

UNIT - V

Verify Stoke's theorem for $F = (x^2 + y^2)i - 2xyj$ taken around the rectangle bounded by the lines $x = \pm a, y = 0, y = b$.

OR

- 11 (a) Prove that $div.(grad r^m) = m(m+1)r^{m-2}$.
 - (b) Find the directional derivative of f = xy + yz + zx in the direction of vector i + 2j + 2k at the point (1, 2, 0).
